Abstract
AbstractWe propose a method for inferring the internal anisotropic volumetric texture of a given wood block from annotated photographs of its external surfaces. The global structure of the annual ring pattern is represented using a continuous spatial scalar field referred to as the growth time field (GTF). First, we train a generic neural model that can represent various GTFs using procedurally generated training data. Next, we fit the generic model to the GTF of a given wood block based on surface annotations. Finally, we convert the GTF to an annual ring field (ARF) revealing the layered pattern and apply neural style transfer to render orientation‐dependent small‐scale features and colors on a cut surface. We show rendered results of various physically cut real wood samples. Our method has physical and virtual applications such as cut‐preview before subtractive fabricating solid wood artifacts and simulating object breaking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.