This paper focuses on a special category of machine learning problems arising in cases where the set of available training instances is significantly biased towards a particular class of patterns. Our work addresses the so-called Class Imbalance Problem through the utilization of an Artificial Immune System-(AIS)based classification algorithm which encodes the inherent ability of the Adaptive Immune System to mediate the exceptionally imbalanced “self” / “non-self” discrimination process. From a computational point of view, this process constitutes an extremely imbalanced pattern classification task since the vast majority of molecular patterns pertain to the “non-self” space. Our work focuses on investigating the effect of the class imbalance problem on the AIS-based classification algorithm by assessing its relative ability to deal with extremely skewed datasets when compared against two state-of-the-art machine learning paradigms such as Support Vector Machines (SVMs) and Multi-Layer Perceptrons (MLPs). To this end, we conducted a series of experiments on a music-related dataset where a small fraction of positive samples was to be recognized against the vast volume of negative samples. The results obtained indicate that the utilized bio-inspired classifier outperforms SVMs in detecting patterns from the minority class while its performance on the same task is competently close to the one exhibited by MLPs. Our findings suggest that the AIS-based classifier relies on its intrinsic resampling and class-balancing functionality in order to address the class imbalance problem.
Read full abstract