Background/Objectives: Prostate cancer (PCa) patients who do not respond to androgen deprivation therapy (ADT), referred to as castration-resistant prostate cancer (CRPC), remain a clinical challenge due to confirm the aggressive nature of CRPC and its resistance to conventional therapies. This study aims to investigate the potential of microRNAs (miRNAs) as biomarkers for predicting therapeutic response in CRPC patients. Methods: We performed miRNA and mRNA expression analyses using publicly available datasets and applied 3D cell culture models to replicate more physiologically relevant tumor conditions. Genetic analysis techniques were employed on publicly available data, and expression profiles from 3D cell culture models were examined. Results: Eighteen miRNAs with differential expression were identified between patients who responded favorably to abiraterone therapy (responders) and those with advanced CRPC (non-responders). Specifically, miRNAs such as hsa-miR-152-3p and hsa-miR-34a-3p were found to be associated with critical pathways, including TGF-β signaling and P53, which are linked to therapeutic resistance. Several miRNAs were identified as potential predictors of treatment efficacy, including therapies like abiraterone. Conclusions: These results indicate that miRNAs could serve as non-invasive biomarkers for predicting therapeutic outcomes, facilitating a more personalized approach to CRPC treatment. This study provides a novel perspective on treatment strategies for CRPC, emphasizing the role of miRNAs in improving therapeutic precision and efficacy in this complex disease.
Read full abstract