Three-dimensional (3D) printing technology for continuous fiber reinforced thermoplastic composites (C-FRTP), capable of rapid manufacturing of lightweight components with intricate geometric features, has emerged as one of the most promising technologies in the field of advanced composite manufacturing. Path planning is a crucial step for determining the fabrication quality of C-FRTP components. This study proposed a new 3D printing path planning strategy driven by the geometric features and tensile properties of C-FRTP components. The strategy employed the properties of the Euler graph to generate the continuous full-field filling paths, ensuring the geometric features of the target components. The intersections were scattered along the printing path to enhance the tensile strength. The feasibility and advantages of the new path planning strategy were validated by comparative experiments with different printing paths. The results indicated that the new strategy not only achieved the geometric features of the target components but significantly enhanced their tensile strength. Using the printing path generated by the new path planning strategy, the tensile strength of specimens featuring mounting holes reached 349.4 MPa, which was only about 4.1 % lower than the tensile strength of continuous fibers at straight paths. Compared to the existing contour-parallel path, the new strategy in this work improved the tensile properties by about 40.9 %. The new path planning strategy proposed in this study shows great potential to design and fabricate C-FRTP components with enhanced mechanical properties for practical applications.