Abstract
Three-dimensional (3D) printing technology for continuous fiber reinforced thermoplastic composites (C-FRTP), capable of rapid manufacturing of lightweight components with intricate geometric features, has emerged as one of the most promising technologies in the field of advanced composite manufacturing. Path planning is a crucial step for determining the fabrication quality of C-FRTP components. This study proposed a new 3D printing path planning strategy driven by the geometric features and tensile properties of C-FRTP components. The strategy employed the properties of the Euler graph to generate the continuous full-field filling paths, ensuring the geometric features of the target components. The intersections were scattered along the printing path to enhance the tensile strength. The feasibility and advantages of the new path planning strategy were validated by comparative experiments with different printing paths. The results indicated that the new strategy not only achieved the geometric features of the target components but significantly enhanced their tensile strength. Using the printing path generated by the new path planning strategy, the tensile strength of specimens featuring mounting holes reached 349.4 MPa, which was only about 4.1 % lower than the tensile strength of continuous fibers at straight paths. Compared to the existing contour-parallel path, the new strategy in this work improved the tensile properties by about 40.9 %. The new path planning strategy proposed in this study shows great potential to design and fabricate C-FRTP components with enhanced mechanical properties for practical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.