To operate autonomously, military unmanned aerial vehicles (UAVs) must be equipped with a path planning module capable of calculating feasible trajectories. This is a highly complex and nonlinear optimisation problem that challenges state of the art methods. In this paper, we present a massively parallel hybrid algorithm to solve the path planning problem for fixed-wing military UAVs. The proposed solution combines the strengths of the genetic algorithm (GA) and the particle swarm optimisation and allows for the calculation of quasi-optimal paths in realistic 3D environments. To reduce the execution time, the proposed algorithm is parallelised on the NVIDIA Jetson TX1 embedded graphics processing unit (GPU). By exploiting the parallel architecture of the GPU, the runtime is reduced by a factor of 23.6× to just 4.3 seconds while requiring only 10 watts, making it an excellent solution for on-board path planning. The proposed system is tested in a simulation using 18 scenarios on six different terrains.
Read full abstract