The role of excitatory amino acid metabotropic receptors in the regulation of excitability of sympathetic preganglionic neurons was investigated. This study used both conventional intracellular and whole-cell patch clamp techniques to record from sympathetic preganglionic neurons in transverse spinal cord slices of the rat (9-21 days old). The metabotropic receptor agonists (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) (10-200 microM, superfused for 2-60 s) and quisqualate (1-50 microM, superfused for 2-60 s) induced concentration-dependent depolarizing responses which did not desensitize. These responses were unaffected by the glutamate ionotropic receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10-50 microM), 6,7-dinitroquinoxaline-2,3-dione (DNQX, 10 microM), dizocilpine (MK-801, 10-40 microM), 3-[(R)-2-carboxy-piperazin-4-yl]-propyl-1-phosphonic acid (D-CPP, 10-50 microM) and DL-2-amino-5-phosphonovaleric acid (DL-AP5, 20-100 microM). Depolarizing responses to 1S,3R-ACPD and quisqualate were unaffected by L-2-amino-3-phosphonopropionic acid (L-AP3, 30 microM-1mM) and L-2-amino-4-phosphonobutanoic acid (L-AP4, 100 microM-1 mM)). The responses to 1S,3R-ACPD and quisqualate were reduced by including the G-protein blocker GDP-beta-S (400 microM) in the patch pipette solution by 77 +/- 2% (mean +/- S.E) of control (n = 3), suggesting that these agonists activate a G-protein-coupled receptor. Metabotropic receptor-mediated responses were maintained in the presence of tetrodotoxin (500 nM), progressively reduced with increased membrane hyperpolarization to around -95 mV and associated with either an increase of 16.5 +/- 2.8% (data from four neurons) in the majority of neurons (n = 22 of 34) or no measurable change (n = 12) in neuronal input resistance. These data suggest that the agonists exert a direct action on 1S,3R-ACPD and quisqualate had several effects on sympathetic preganglionic neuron membrane properties including: inhibition of a slow apamin-insensitive component of the afterhyperpolarization; a reduction in spike frequency adaptation leading to increases in firing frequency from 6.4 +/- 2.8 Hz in control experiments up to 14.7 +/- 3.0 Hz (n = 6 neurons) in the presence of a metabotropic receptor agonist: a broadening of the action potential by 37.5 +/- 6.4% (n = 6 neurons) of control. These observations suggest that the metabotropic receptor-mediated depolarization is due, at least in part, to the reduction of potassium conductances involved in the spike afterhyperpolarisation potential.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract