Purpose:To quantify the impact of range and setup uncertainties on various dosimetric indices that are used to assess normal tissue toxicities of patients receiving passive scattering proton beam therapy (PSPBT).Methods:Robust analysis of sample treatment plans of six brain cancer patients treated with PSPBT at our facility for whom the maximum brain stem dose exceeded 5800 CcGE were performed. The DVH of each plan was calculated in an Eclipse treatment planning system (TPS) version 11 applying ±3.5% range uncertainty and ±3 mm shift of the isocenter in x, y and z directions to account for setup uncertainties. Worst‐case dose indices for brain stem and whole brain were compared to their values in the nominal plan to determine the average change in their values. For the brain stem, maximum dose to 1 cc of volume, dose to 10%, 50%, 90% of volume (D10, D50, D90) and volume receiving 6000, 5400, 5000, 4500, 4000 CcGE (V60, V54, V50, V45, V40) were evaluated. For the whole brain, maximum dose to 1 cc of volume, and volume receiving 5400, 5000, 4500, 4000, 3000 CcGE (V54, V50, V45, V40 and V30) were assessed.Results:The average change in the values of these indices in the worst scenario cases from the nominal plan were as follows. Brain stem; Maximum dose to 1 cc of volume: 1.1%, D10: 1.4%, D50: 8.0%, D90:73.3%, V60:116.9%, V54:27.7%, V50: 21.2%, V45:16.2%, V40:13.6%,Whole brain; Maximum dose to 1 cc of volume: 0.3%, V54:11.4%, V50: 13.0%, V45:13.6%, V40:14.1%, V30:13.5%.Conclusion:Large to modest changes in the dosiemtric indices for brain stem and whole brain compared to nominal plan due to range and set up uncertainties were observed. Such potential changes should be taken into account while using any dosimetric parameters for outcome evaluation of patients receiving proton therapy.