With the advancement of manufacturing, the precision requirements for various high-precision processing equipment and instruments have further increased. Due to its noncontact nature, simple structure, and controllable performance, electromagnetic levitation has broad application prospects in ultra-precision instruments and ground testing of aerospace equipment. Research on vibration isolation technology using electromagnetic levitation is imperative. This paper reviews the latest research achievements of three types of passive isolators and five active isolation actuators. It also summarizes the current research status of analytical methods for passive isolators and the impact of isolator layout. This study explores current isolators’ achievements, such as the development of passive isolators that generate negative stiffness and require mechanical springs for uniaxial translational vibrations, single-function actuators, and control systems focused on position and motion vibration control. Based on the current isolators’ characteristics, this review highlights future developments, including focusing on passive isolators for heavy loads and multi-axis isolation, addressing complex vibrations, including rotational ones, and developing methods to calculate forces and torques for arbitrary six-DOF movements while improving speed. Additionally, it emphasizes the importance of multifunctional actuators to simplify system structures and comprehensive control systems that consider more environmental factors. This provides significant reference value for vibration isolation technology using electromagnetic levitation.