Abstract
Quasi-Zero Stiffness (QZS) is essential for low-frequency passive vibration isolation, with the negative stiffness mechanism (NSM) being pivotal for achieving QZS. Mechanical spring-based NSMs often face issues like contact friction, parasitic high-frequency modes, and stiffness nonlinearity. This paper presents a new magnetic NSM designed to overcome these challenges effectively. The mechanism is applied to a Fast Steering Mirror (FSM) as a case study, enhancing its vibration isolation performance. Initially, a torque model for the magnetic NSM is established, exploring the impact of various structural dimensions on torque and nonlinear issues. The magnetic NSM features adjustable negative stiffness and a large, adjustable linear working range. Experiments were designed to validate the principle of the magnetic NSM and its effect on the QZS FSM’s vibration isolation performance. The experimental results confirm the accuracy of the magnetic NSM principle. The QZS FSM stiffness is significantly reduced to quasi-zero stiffness, resulting in a decrease of the resonance peak from 20.1 to −12.8 dB and lowering the minimum suppressible vibration frequency from 54.63 to 3.44 Hz, thereby enhancing the vibration isolation performance of the QZS FSM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.