The thermodynamic properties of bioactive peptides provide insights into their functional behavior and their biological efficacy. We conducted precise analyses of the density, the ultrasonic velocity and the relative attenuation of serial dilutions of three commercial dairy peptides prepared by enzymatic methods. From these we determined the partial specific volume and the partial specific adiabatic compressibility coefficient for the peptides. At concentrations greater than ~2.5 mg mL−1, the apparent values for specific volume and adiabatic compressibility were constant, differing between the three peptides at ±3% for specific volume and ±70% for compressibility. Both specific volume and adiabatic compressibility were highly dependent on concentration, indicating the importance of precise low concentration measurements to obtain correct values for these thermodynamic parameters. From these parameters it was apparent that restructuring of water molecules around the peptides (and their associated counterions) led to compact solutes that were also incompressible. These thermodynamic analyses are critical for understanding how the properties and the beneficial effects of bioactive peptides are influenced by their chemical environment.
Read full abstract