Abstract

High hydrostatic pressures have been used to dissociate non-native protein aggregates and foster refolding to the native conformation. In this study, partial specific volume and adiabatic compressibility measurements were used to examine the volumetric contributions to pressure-modulated refolding. The thermodynamics of pressure-modulated refolding from non-native aggregates of recombinant human interleukin-1 receptor antagonist (IL-1ra) were determined by partial specific volume and adiabatic compressibility measurements. Aggregates of IL-1ra formed at elevated temperatures (55 degrees C) were found to be less dense than native IL-1ra and refolded at 31 degrees C under 1,500 bar pressure with a yield of 57%. Partial specific adiabatic compressibility measurements suggest that the formation of solvent-free cavities within the interior of IL-1ra aggregates cause the apparent increase in specific volume. Dense, pressure-stable aggregates could be formed at 2,000 bar which could not be refolded with additional high pressure treatment, demonstrating that aggregate formation conditions and structure dictate pressure-modulated refolding yields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.