Abstract

A carbon black (CB) filled styrene-butadiene rubber (SBR) compound was investigated by acoustic techniques, scanning acoustic microscopy and longitudinal wave velocitometry.The CB agglomerates of larger than 5 µm dispersed in the compound mixed by two-roll mill were observed as black spots in acoustic micrographs. On the other hand, the CB agglomerates in the compound mixed by oil-pressure kneader were not observed in the acoustic micrograph, since the particle size of the agglomerates was less than 5 µm.The density and the longitudinal wave velocity of the compound were measured as a function of the weight percentage of the CB. The density and the velocity increased linearly with the content of the CB. The mass ratio of the bound rubber to the CB in the unvulcanized sample was determined by using toluene extraction and thermo gravimetric analysis. The partial specific adiabatic compressibility of the CB was estimated as (−0.5±0.5)×10−10 Pa−1 on the basis of the three states model. The adiabatic compressibility of the bound rubber was (2.2±0.5)×10−10 Pa−1, and it is half of that of the SBR matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call