Immunoreactive insulin-like growth factors I and II (IGF-I, IGF-II) were sought in the endocrine pancreas of representative birds, reptiles, and amphibia using antisera specific for mammalian IGF-I and IGF-II and the classical islet hormones insulin (INS), glucagon (GLUC), somatostatin (SOM), and pancreatic polypeptide (PP) in double immunofluorescence. Both IGF-I and IGF-II immunoreactivities were present in the endocrine pancreas of all species. IGF-II immunoreactivity was exclusively found in INS-immunoreactive (-IR) cells, indicating evolutionary conservation of the islet IGF-II system. In contrast, IGF-I immunoreactivity was distributed differently among the species and never occurred in INS-IR cells. In the anuran Xenopus laevis, IGF-I immunoreactivity was present in islet cells showing coexistence of GLUC and PP immunoreactivities. In reptiles, the lizards ( Lacerta viridis, Scincus officinalis) exhibited IGF-I immunoreactivity in PP-IR and SOM-IR cells and the snakes ( Psamophis leniolatum, Coluber ravergieri) in SOM-IR and GLUC-IR cells. In birds, IGF-I immunoreactivity was located either in SOM-IR cells only ( Gallus g. domesticus, Streptopelia roseogrisea) or in PP-IR and SOM-IR cells ( Coturnix c. japonica). Thus, the distribution patterns of islet IGF-I immunoreactivities in birds, reptiles, and amphibia are equivalent to those in mammals and most bony fish. They differ, however, from those found in cartilaginous fish, cyclostomes, and protochordates, where a total or partial coexistence of IGF-I and INS immunoreactivities has been obtained. Therefore, the divergence of IGF-I and INS seems to have occurred early in vertebrate phylogeny. Furthermore, the existence of IGF-I immunoreactivity likely is common in the islets of all vertebrates. Finally, no phylogenetic trend to concentrate IGF-I immunoreactivity in a particular islet cell type is apparent.
Read full abstract