Background and ObjectiveProtein-protein interaction (PPI) is a vital process in all living cells, controlling essential cell functions such as cell cycle regulation, signal transduction, and metabolic processes with broad applications that include antibody therapeutics, vaccines, and drug discovery. The problem of sequence-based PPI prediction has been a long-standing issue in computational biology. MethodsWe introduce MaTPIP, a cutting-edge deep-learning framework for predicting PPI. MaTPIP stands out due to its innovative design, fusing pre-trained Protein Language Model (PLM)-based features with manually curated protein sequence attributes, emphasizing the part-whole relationship by incorporating two-dimensional granular part (amino-acid) level features and one-dimensional whole-level (protein) features. What sets MaTPIP apart is its ability to integrate these features across three different input terminals seamlessly. MatPIP also includes a distinctive configuration of Convolutional Neural Network (CNN) with Transformer components for concurrent utilization of CNN and sequential characteristics in each iteration and a one-dimensional to two-dimensional converter followed by a unified embedding. The statistical significance of this classifier is validated using McNemar's test. ResultsMaTPIP outperformed the existing methods on both the Human PPI benchmark and cross-species PPI testing datasets, demonstrating its immense generalization capability for PPI prediction. We used seven diverse datasets with varying PPI target class distributions. Notably, within the novel PPI scenario, the most challenging category for Human PPI Benchmark, MaTPIP improves the existing state-of-the-art score from 74.1% to 78.6% (measured in Area under ROC Curve), from 23.2% to 32.8% (in average precision) and from 4.9% to 9.5% (in precision at 3% recall) for 50%, 10% and 0.3% target class distributions, respectively. In cross-species PPI evaluation, hybrid MaTPIP establishes a new benchmark score (measured in Area Under precision-recall curve) of 81.1% from the previous 60.9% for Mouse, 80.9% from 56.2% for Fly, 78.1% from 55.9% for Worm, 59.9% from 41.7% for Yeast, and 66.2% from 58.8% for E.coli. Our eXplainable AI-based assessment reveals an average contribution of different feature families per prediction on these datasets. ConclusionsMaTPIP mixes manually curated features with the feature extracted from the pre-trained PLM to predict sequence-based protein-protein association. Furthermore, MaTPIP demonstrates strong generalization capabilities for cross-species PPI predictions.
Read full abstract