Abstract

Cropping-and-segmenting pattern parsers often combine diverse inner correlations into a single metric/scheme, resulting in over-generalizations and redundant representations. It is proposed to streamline pattern parsing by using presenting a redundant association elimination network (RAEN) with capsule attention twisters (CATs) and capsule-attention routing agreement (CARA). CATs trim delicate relationships between parts and wholes that are weak and interchangeable. Senior entities can only be updated by primary entities that meet the requirements of inter-part diversity and intra-object cohesiveness. In order to enhance results, CARA is designed to protect against the unnecessary voting signals of traditional routing protocols. Experiments involving facial and human segmentation show that RAEN is better than current remarkable methods, particularly for defining detailed semantic boundaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.