This study is the first in the literature to model the joint equilibrium of departure time and parking location choices when commuters travel with autonomous vehicles (AVs). With AVs, walking from parking spaces to the work location is not needed. Instead, AVs will drop off the commuters at the workplace and then drive themselves to the parking spaces. In this context, the equilibrium departure/arrival profile is different from the literature with non-autonomous vehicles (non-AVs). Besides modeling the commuting equilibrium, this study further develops the first-best time-dependent congestion tolling scheme to achieve the system optimum. Also, a location-dependent parking pricing scheme is developed to replace the tolling scheme. Furthermore, this study discusses the optimal parking supply to minimize the total system cost (including both the travel cost and the social cost of parking supply) under either user equilibrium or system optimum traffic flow pattern. It is found that the optimal planning of parking can be different from the non-AV situation, since the vehicles can drive themselves to parking spaces that are further away from the city center and walking of commuters is avoided. This paper sheds light on future parking supply planning and traffic management.
Read full abstract