Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development. Parent-of-origin effects are phenotypic effects that depend on whether a causal gene is inherited from the mother or the father. They are discussed in the context of the parental conflict theory in relation to nutrient allocation to the offspring. Imprinting is an important mechanism leading to uniparental gene expression in the endosperm and maternal control of its development. The parental conflict theory would predict that, with limited resources available, there is a competition between paternal alleles to increase nutrient supply, allowing rapid development and seed filling. A parental conflict might therefore shape the evolution of genes that can influence the allocation of nutrients to the seeds. However, we will also discuss other possible causes that might select genes for uniparental contribution. New data show that parent-of-origin effects also occur during the early stages of embryo development. These appear to be caused primarily by the carry-over of gamete-derived factors. In this review, we will highlight the molecular pathways that control apical-basal patterning in the early embryo and discuss recent findings in the context of the parental conflict theory and alternative explanations.
Read full abstract