Fungal azaphilones are a broad class of naturally-occurring pigments with diverse applications. Among the azaphilone pigments, mitorubrins are well recognized for their antiviral, antibacterial, antifungal, antiprotozoal, antidiabetic, and antiaging activities in addition to their well-known yellow-orange color. This makes these pigments interesting candidates for use in foods, as cosmetics, and as medicines. In particular, if it is desired to modify the properties of mitorubrin-based pigments, for example by derivatization, it is essential to have an understanding of the electronic spectra of the parent molecules. We have therefore undertaken a computational study of a series of mitorubrins, comparing our computed results with experimental UV/visible spectra. Both density-functional theory (DFT) and coupled-cluster (CC2) methods have been used, and in general, the results are in very good agreement with observation. In order to provide a simple and useful picture of the spectra we analyze the stronger transitions in terms of natural transition orbitals (NTOs).
Read full abstract