This work investigated the structure, microstructure, and ferroelectric and dielectric behavior of (Pb0.97Ba0.03)(Zr0.98Ti0.02)1-xSnxO3 (PBZT_xSn) solid solution with variable tin content in the range x = 0.00-0.08. Synthesis was carried out using the powder calcination method, and sintering was carried out using the hot-pressing method. For all the PBZT_xSn samples at room temperature, X-ray diffractograms confirmed the presence of an orthorhombic (OR) crystal structure with space group Pnnm, and the microstructure is characterized by densely packed and properly shaped grains with an average size of 1.36 µm to 1.73 µm. At room temperature, PBZT_xSn materials have low permittivity values ε' ranging from 265 to 275, whereas, at the ferroelectric-paraelectric phase transition temperature (RE-C), the permittivity is high (from 8923 to 12,141). The increase in the tin dopant in PBZT_xSn lowers permittivity and dielectric loss and changes the scope of occurrence of phase transitions. The occurring dispersion of the dielectric constant and dielectric loss at low frequencies, related to the Maxwell-Wagner behavior, decreases with increasing tin content in the composition of PBZT_xSn. Temperature studies of the dielectric and ferroelectric properties revealed anomalies related to the phase transitions occurring in the PBZT_xSn material. With increasing temperature in PBZT_xSn, phase transitions occur from orthorhombic (OR) to rhombohedral (RE) and cubic (C). The cooling cycle shifts the temperatures of the phase transitions towards lower temperatures. The test results were confirmed by XRD Rietveld analysis at different temperatures. The beneficial dielectric and ferroelectric properties suggest that the PBZT_xSn materials are suitable for micromechatronic applications as pulse capacitors or actuator elements.