An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to investigate the diversity of fungi associated with mature strawberries collected from a volcanic orchard and open-air market stands. Based on the Kruskal-Wallis test, no statistically significant differences were observed in both non-phylogenetic and phylogenetic alpha diversity indices. According to beta diversity analyses, significant differences in fungal communities were found between groups (orchard vs. market). Taxonomic assignment of amplicon sequence variables (ASVs) revealed 7 phyla and 31 classes. The prevalent fungal phyla were Basidiomycota (29.59-84.58%), Ascomycota (15.33-70.40%), and Fungi-phy-Insertae-sedis (0.45-2.89%). The most predominant classes among the groups were Saccharomycetes in the market group, and Microbotryomycetes and Tremellomycetes in the orchard group. Based on the analysis of microbiome composition (ANCOM), we found that the most differentially fungal genera were Hanseniaspora, Kurtzmaniella, and Phyllozyma. Endophytic yeasts Curvibasidium cygneicollum were prevalent in both groups, while Candida railenensis was detected in fruits originating only from the market. In addition, Rhodotorula graminis (relative abundance varying from 1.7% to 21.18%) and Papiliotrema flavescens (relative abundance varying from 1.58% to 16.55%) were detected in all samples regardless of origin, while Debaryomyces prosopidis was detected in samples from the market only, their relative abundance varying with the sample (from 0.80% to 19.23%). Their role in fruit quality and safety has not been yet documented. Moreover, several clinically related yeasts, such as Meyerozyma guilliermondii and Candida parapsilosis, were detected in samples only from the market. Understanding the variety and makeup of the mycobiome in ripe fruits during the transition from the orchard to the market is crucial for fruit safety after harvest.