Abstract

The current trend in agricultural development is the establishment of sustainable agricultural systems. This involves utilizing and implementing eco-friendly biofertilizers and biocontrol agents as alternatives to conventional fertilizers and pesticides. A plant growth-promoting fungal strain, that could alter root system architecture and promote the growth of Arabidopsis seedlings in a non-contact manner by releasing volatile organic compounds (VOCs) was isolated in this study. 26S rDNA sequencing revealed that the strain was a yeast-like fungus, Papiliotrema flavescens. Analysis of plant growth-promoting traits revealed that the fungus could produce indole-3-acetic acid and ammonia and fix nitrogen. Transcriptome analysis in combination with inhibitor experiments revealed that P. flavescens VOCs triggered metabolic alterations, promoted auxin accumulation and distribution in the roots, and coordinated ethylene signaling, thus inhibiting primary root elongation and inducing lateral root formation in Arabidopsis. Additionally, transcriptome analysis and fungal infection experiments confirmed that pretreatment with P. flavescens stimulated the defense response of Arabidopsis to boost its resistance to the pathogenic fungus Botrytis cinerea. Solid-phase microextraction, which was followed by gas chromatography-mass spectrometry analysis, identified three VOCs (acetoin, naphthalene and indole) with significant plant growth-promoting attributes. Their roles were confirmed using further pharmacological experiments and upregulated expression of auxin- and ethylene-related genes. Our study serves as an essential reference for utilizing P. flavescens as a potential biological fertilizer and biocontrol agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call