Excessive copper (Cu2+) causes adverse effects on human health and the ecological environment. Traditional methods for detecting Cu2+ have drawbacks such as high detection costs, complex operating conditions, and being time consuming. Therefore, there is an urgent need to develop simple detection methods to better meet specific health and environment quality needs. In this work, a paper-based fluorescence sensor was prepared (herein referred to as the as-prepared method) by immersing filter paper in aqueous polyethyleneimine (PEI) solution, and its potential use in Cu2+ detection was investigated. The results showed that the as-prepared paper samples, with fluorescence properties obtained by aggregation-induced luminescence of PEI, have selective recognition of Cu2+ based on the internal filtration effect, and the lowest detection limit is 0.03 μM. In addition, the relative error of this method is in the range of 1.80~2.23%, which is relatively comparable to the national standard method (0.63~630 μM), demonstrating high accuracy. Therefore, paper-based sensors with a simple preparation method have potential applications in the detection of Cu2+ in water.