AbstractA numerical study is performed in order to evaluate the performance and optimal operating conditions of a palladium membrane reactor for methanol synthesis. A novel reactor configuration with a Pd wall, which is perm‐selective to hydrogen, has been proposed. In this configuration the reactants are added to the tube side while pure hydrogen is added to the shell side, as a result, the hydrogen diffuses across the membrane from the shell side to the tube side. In this membrane reactor, hydrogen penetrates to the reaction side in order to maintain a suitable hydrogen level in the whole length of the reactor and shift the equilibrium reaction. The effects of different parameters on the methanol output mole fraction were investigated in the co‐current mode. These parameters were membrane thickness, reaction side flow rate, reaction side pressure, shell side pressure and H2/CO2 ratio in the feed.
Read full abstract