To improve the corrosion inhibition and wear resistance of materials, the pack cementation method was used to prepare chromized coatings on the surfaces of high-carbon T9 steel and low-carbon SPCC steel. The results showed the formation of a uniform and dense double-layer structure with a thickness of ~10 μm on the surfaces of two different types of steel. The coating layer for T9 steel was mainly composed of Cr23C6 and Cr7C3, while that for SPCC steel was mainly composed of Cr23C6 and Fe-Cr solid solution. Additionally, both of the steels showed different hardness distributions. The hardness measurements of the outer layers of the T9 steel and SPCC steel were ~1737.72 HV and 1771.91 HV, while the hardness values of the secondary layers were 1378.31 HV and 448.52 HV, respectively. The polarization curves in 3.5 wt.% NaCl solution demonstrated the better corrosion resistance of the chromized coating. Chromizing increased the corrosion potential by ~0.2 V and reduced the corrosion current density by one order of magnitude. Under the presence of an 8 N load, the friction factor before and after the chromizing of T9 steel was about 0.69, and the mass wears were 2 mg and 0.6 mg, respectively. Meanwhile, the friction factor of the SPCC steel before and after chromizing was about 0.73, with respective mass wears of 2 mg and 2.9 mg. The wear resistance of T9 steel after chromizing was superior, but it became worse after chromizing for the SPCC steel.
Read full abstract