Inbreeding is of concern in supportive breeding programmes in Pacific salmonids, Oncorhynchus spp, where the number of breeding adults is limited by rearing space or poor survival to adulthood, and large numbers are released to supplement wild stocks and fisheries. We reconstructed the pedigree of 6602 migratory hatchery steelhead (Oncorhynchus mykiss) over four generations, to determine the incidence and fitness consequences of inbreeding in a northwest USA programme. The hatchery maintained an effective population size, Ñ(e) = 107.9 from F(0) to F(2), despite an increasing census size (N), which resulted in a decreasing N(e)/N ratio (0.35 in F(0) to 0.08 in F(2)). The reduced ratio was attributed to a small broodstock size, nonrandom transfers and high variance in reproductive success (particularly in males). We observed accumulation of inbreeding from the founder generation (in F(4), percentage individuals with inbreeding coefficients Δf > 0 = 15.7%). Generalized linear mixed models showed that body length and weight decreased significantly with increasing Δf, and inbred fish returned later to spawn in a model that included father identity. However, there was no significant correlation between Δf and age at return, female fecundity or gonad weight. Similarly, there was no relationship between Δf and reproductive success of F(2) and F(3) individuals, which might be explained by the fact that reproductive success is partially controlled by hatchery mating protocols. This study is one of the first to show that small changes in inbreeding coefficient can affect some fitness-related traits in a monitored population propagated and released to the wild.