A block copolymer with discotic liquid crystalline behavior was synthesized using Grignard metathesis polymerization (GRIM) and initiators for continuous activator regeneration atom transfer radical polymerization (ICAR-ATRP). A novel discotic liquid crystalline mesogen, 6-(pyren-1-yloxy)hexyl methacrylate (PyMA), comprises a block that is attached to regioregular poly(3-hexylthiophene) (rr-P3HT) generated by GRIM and subjected to end-group modification. Due to the continuous regeneration of Cu+ in the reaction mixture in ICAR-ATRP compared to conventional methods, the synthesis was successfully performed with less catalyst. The purity and yield of the final product are increased by eliminating rigorous post-synthesis purification. Stacked pyrene units have contributed to the enhanced long-range π–π interactions and aligning of the P3HT block as observed in thin-film X-ray diffraction (XRD). Furthermore, field-effect mobilities in the order of 10–2 cm2 V–1 s–1 in bottom-gate, top-contact organic field-effect transistors (OFETs) suggest an enhancement in charge transport due to the discotic electron-rich pyrene units that help mitigate the insulating effect of the methacrylate backbone. The formation of uniform microdomains of P3HT-b-poly(PyMA) observed with tapping mode atomic force microscopy (TMAFM) on the channel regions of OFETs indicates the unique packing of the block copolymer in comparison to pristine P3HT. Thermotropic properties of the novel discotic mesogen in the presence and absence of P3HT were observed with both the poly(3-hexylthiophene)-b-poly(6-(pyren-1-yloxy)hexyl methacrylate) (P3HT-b-poly(PyMA)) block copolymer and poly(6-(pyren-1-yloxy)hexyl methacrylate) (poly(PyMA)) homopolymer using polarized optical microscopy (POM) and differential scanning calorimetry (DSC).
Read full abstract