Abstract

In selective solvents, poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) assemble into one-dimensional nanowires (NWs) due to strong π–π stacking interactions of the P3HT block. Herein, we report the effect of P3HT regioregularity (RR) on the assembly of P3HT-based amphiphilic BCPs in solution. We synthesized a series of P3HT-block-poly(2-vinylpyridine) (P3HT-b-P2VP) copolymers with similar molecular weights and P3HT volume fractions but with different RRs, ranging from 55% to 95%, and studied their assembly in tetrahydrofuran/n-butanol mixtures. P3HT-b-P2VP copolymers with high RR (>80%) crystallized into well-ordered NWs with core widths consistent with fully extended P3HT chains. In BCP nanostructures with decreasing RR, more flexible P3HT chains produced gradual increases in the width of the NWs, from 12 to 24 nm. Eventually, a morphological transition to spherical micelle structures was observed at 55% RR. The structural differences were visualized by incorporating Au nanoparticles, which l...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.