We report the growth of single-crystalline ZnO nanowires on n- and p-type Si wafers by electrodeposition. On strongly doped n-type Si high-quality nanowires can be grown under similar conditions as used for metallic substrates. For low electron concentrations occurring in weakly n-type or in p-type wafers, nanowire growth is inhibited. This difference allows selective growth in strongly n-type areas. The inhibited growth on weakly n-type and p-type wafers can be improved by applying stronger cathodic electrode potentials or by illuminating the growth area. The wires on n-Si show efficient electroluminescence covering the visible and extending into the ultraviolet spectral range.