Abstract

Infrared spectroscopy and electron spin resonance measurements are used to study the properties of porous silicon layers on adsorption of the I2 iodine molecules. The layers are formed on the p-an n-Si single-crystal wafers. It is established that, in the atmosphere of I2 molecules, the charge-carrier concentration in the layers produced on the p-type wafers can be noticeably increased: the concentration of holes can attain values on the order of ∼1018−1019 cm−3. In porous silicon layers formed on the n-type wafers, the adsorption-induced inversion of the type of charge carriers and the partial substitution of silicon-hydrogen bonds by silicon-iodine bonds are observed. A decrease in the concentration of surface paramagnetic defects, P b centers, is observed in the samples with adsorbed iodine. The experimental data are interpreted in the context of the model in which it is assumed that both deep and shallow acceptor states are formed at the surface of silicon nanocrystals upon the adsorption of I2 molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.