Abstract By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. For a given finite group G, let p(G) denote the minimal degree of a faithful representation of G by permutation matrices, and let c(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices. See [4] . It is easy to see that c(G) is a lower bound for p(G). Behravesh [H. Behravesh, The minimal degree of a faithful quasi-permutation representation of an abelian group, Glasg. Math. J. 39 (1) (1997) 51–57] determined c(G) for every finite abelian group G and also [H. Behravesh, Quasi-permutation representations of p-groups of class 2, J. Lond. Math. Soc. (2) 55 (2) (1997) 251–260] gave the algorithm of c(G) for each finite group G. In this paper, we first improve this algorithm and then determine c(G) and p(G) for an arbitrary minimal non-abelian p-group G.