Abstract
Given a field F and integer n≥3, we introduce an invariant sn (F) which is defined by examining the vanishing of subspaces of alternating bilinear forms on 2-dimensional subspaces of vector spaces. This invariant arises when we calculate the largest dimension of a subspace of n × n skew-symmetric matrices over F which contains no elements of rank 2. We show how to calculate sn (F) for various families of field F, including finite fields. We also prove the existence of large subgroups of the commutator subgroup of certain p-groups of class 2 which contain no non-identity commutators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.