The effects of oxygen-releasing compound (ORC) on the control of phosphorus (P) release as well as the spatial and temporal distribution of P fractions in sediment were studied through a bench-scale test. An ORC with an extended oxygen-releasing capacity was prepared. The results of the oxygen-releasing test showed that the ORC provided a prolonged period of oxygen release with a highly effective oxygen content of 60.6% when compared with powdery CaO2. In the bench-scale test, an ORC dose of 180 g·m−2 provided a higher inhibition efficiency for P release within 50 days. With the application of the ORC, the dissolved oxygen (DO) concentration and redox potential (ORP) of the overlying water were notably improved, and the dissolved total phosphorus (DTP) was maintained below 0.689 mg·L−1 compared to 2.906 mg·L−1 without the ORC treatment. According to the P fractions distribution, the summation of all detectable P fractions in each sediment layer exhibited an enhanced accumulation tendency with the application of ORC. Higher phosphorus retention efficiencies were observed in the second and third layers of sediment from days 10 to 20 with the ORC. Phosphorus was trapped mainly in the form of iron bound P (Fe-P) and organically bound P (O-P) in sediment with the ORC, whereas the effects of the ORC on exchangeable P (EX-P), apatite-associated P (A-P) and detrital P (De-P) in the sediment sample were not significant. The microbial activities of the sediment samples demonstrated that both the dehydrogenase activity (DHA) and alkaline phosphatase activity (APA) in the upper sediment layer increased with the ORC treatment, which indicated that the mineralization of P was accelerated and the microbial biomass was increased. As the accumulation of P suppressed the release of P, the sediment exhibited an increased P retention efficiency with the application of the ORC.
Read full abstract