Abstract

A novel sequential permeable reactive barrier (multibarrier), composed of oxygen-releasing compound (ORC)/clinoptilolite/spongy iron zones in series, was proposed for ammonium-nitrogen-contaminated groundwater remediation. Column experiments were performed to: (1) evaluate the overall NH4(+)-N removal performance of the proposed multibarrier, (2) investigate nitrogen transformation in the three zones, (3) determine the reaction front progress, and (4) explore cleanup mechanisms for inorganic nitrogens. The results showed that NH4 (+)-N percent removal by the multibarrier increased up to 90.43 % after 21 pore volumes (PVs) at the influent dissolved oxygen of 0.68∼2.45 mg/L and pH of 6.76∼7.42. NH4(+)-N of 4.06∼10.49 mg/L was depleted and NOx(-)-N (i.e., NO3 (-)-N + NO2(-)-N) of 4.26∼9.63 mg/L was formed before 98 PVs in the ORC zone. NH4(+)-N of ≤4.76 mg/L was eliminated in the clinoptilolite zone. NOx(-)-N of 10.44∼12.80 mg/L was lost before 21 PVs in the spongy iron zone. The clinoptilolite zone length should be reduced to 30 cm. Microbial nitrification played a dominant role in NH4(+)-N removal in the ORC zone. Ion exchange was majorly responsible for NH4(+)-N elimination in the clinoptilolite zone. Chemical reduction and hydrogenotrophic denitrification both contributed to NOx(-)-N transformation, but the chemical reduction capacity decreased after 21 PVs in the spongy iron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.