Modifying the energy band structure in heterostructured photocatalysts enhances charge separation efficiency and improves photoelectrochemical (PEC) performance by decreasing the charge transfer barrier. In this study, cobalt doping into WO3/TiO2 core/shell heterojunction nanorod arrays introduces versatile valence states of cobalt altering the oxygen coordination environment around W atoms in WO3, resulting in an increase in W5+ ions and oxygen vacancy defects in WO3 lattice, facilitating the water splitting reaction. Photogenerated electrons transfer easily from the WO3:Co shell to the TiO2 core due to the lower conduction band minimum (CBM) of WO3:Co shell. Moreover, photogenerated holes transfer from the TiO2 core to the WO3:Co shell efficiently due to the higher valence band maximum (VBM) of TiO2 core. The heterostructure has a high photogenerated carrier density (9.89 × 1018 cm-3), improving photoconversion efficiency (2.55 mA cm-2 at 1.23 V vs. RHE) and reducing charge recombination rates (6.51 × 10–4 s-1). Co doping increases the -OH bond on WO3/TiO2 surface, improves its hydrophilicity, and is more conducive to the reaction in aqueous electrolyte. Additionally, the nanorod array structure facilitates PEC reaction kinetics by providing open spaces for mass exchange. This work proposes a feasible strategy for improving photogenerated charge transport and enhancing PEC by combining regulation of the band structure of WO3/TiO2 heterostructures with morphology design.
Read full abstract