Abstract

Simultaneous regulation of the coordination environment of single-atom catalysts (SACs) and engineering architectures with efficient exposed active sites are efficient strategies for boosting peroxymonosulfate (PMS) activation. We isolated cobalt atoms with dual nitrogen and oxygen coordination (Co-N3 O1 ) on oxygen-doped tubular carbon nitride (TCN) by pyrolyzing a hydrogen-bonded cyanuric acid melamine-cobalt acetate precursor. The theoretically constructed Co-N3 O1 moiety on TCN exhibited an impressive mass activity of 7.61×105 min-1 mol-1 with high 1 O2 selectivity. Theoretical calculations revealed that the cobalt single atoms occupied a dual nitrogen and oxygen coordination environment, and that PMS adsorption was promoted and energy barriers reduced for the key *O intermediate that produced 1 O2 . The catalysts were attached to a widely used poly(vinylidene fluoride) microfiltration membrane to deliver an antibiotic wastewater treatment system with 97.5 % ciprofloxacin rejection over 10 hours, thereby revealing the suitability of the membrane for industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.