Abstract

This paper presents results on control over the surface composition, surface structure, and pore texture of core/shell materials, as exemplified by the growth of conformal titanium oxide nanocoatings on γ‑Аl2О3 by atomic layer deposition via sequential and alternating exposure of the alumina to TiCl4 and H2O vapor. The alumina surface and growing titanium oxide layer are shown to influence the characteristics of the forming two-phase material. Increasing the amount of titanium via an increase in the number of deposition cycles leads to a systematic decrease in specific surface area, pore volume, and pore size, which points to conformal pore filling in the starting matrix by a titanium oxide layer. The composition and structure of the titanium oxide coating are influenced by its thickness and the nature of the starting matrix. The coordination state of the titanium oxide in monolayer structures is characteristic of the titanium oxide polyhedra in aluminum titanate. As the distance from the top monolayer to the surface of the matrix (coating thickness) increases, an X-ray amorphous layer is formed in which the oxygen coordination environment of the titanium is similar to that in an anatase-like phase of titanium dioxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.