Lambda-cyhalothrin (λ-cyh) is a potential pyrethroid insecticide widely used in pest control. The presence of pyrethroids in the aquatic ecosystem may induce adverse effects on non-target organisms such as the sea urchin. This study was conducted to assess the toxic effects of λ-cyh on the fatty acid profiles, redox status, and histopathological aspects of Paracentrotus lividus gonads following exposure to three concentrations of λ-cyh (100, 250 and 500µg/L) for 72h. The results showed a significant decrease in saturated fatty acid (SFAs) with an increase in monounsaturated fatty acid (MUFAs) and polyunsaturated fatty acid (PUFAs) levels in λ-cyh treated sea urchins. The highest levels in PUFAs were recorded in the eicosapentaenoic acids (C20:5n-3), docosahexaenoic acids (C22:6n-3) and arachidonic acids (C20:4n-6) levels. The λ-cyh intoxication promoted oxidative stress with an increase in hydrogen peroxide (H2O2), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) levels. Furthermore, the enzymatic activities and non-enzymatic antioxidants levels were enhanced in all exposed sea urchins, while the vitamin C levels were decreased in 100 and 500µg/L treated groups. Our biochemical results have been confirmed by the histopathological observations. Collectively, our findings offered valuable insights into the importance of assessing fatty acids' profiles as a relevant tool in aquatic ecotoxicological studies.