To evaluate the protective role of lycopene (LYC) against aflatoxin B1 (AFB1)-induced erythrocyte dysfunction and oxidative stress, male kunming mice were treated with LYC (5 mg/kg) and/or AFB1 (0.75 mg/kg) by intragastric administration for 30 d. Hematological indices were detected to assess erythrocyte function. The erythrocytes C3b receptor rate (E-C3bRR) and erythrocytes C3b immune complex rosette rate (E-ICRR) were detected to assess erythrocyte immune function. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents and superoxide dismutase (SOD) and catalase (CAT) activities were determined to evaluate erythrocyte oxidative stress. The results showed that LYC administration significantly relieved AFB1-induced erythrocyte dysfunction by increasing the levels of red blood cell count (RBC), hemoglobin (HGB) and hematocrit (HCT), as well as reducing red blood cell volume distribution width (RDW) level, while the levels of mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and mean platelet volume (MPV) had no significant differences among the four groups. Besides, LYC ameliorated AFB1-induced erythrocyte immune dysfunction by increasing E-C3bRR and decreasing E-ICRR. Furthermore, LYC also alleviated AFB1-induced erythrocyte oxidative stress by decreasing H2O2 and MDA contents and increasing SOD and CAT activities. These results indicated that LYC protected against AFB1-induced erythrocyte dysfunction and oxidative stress in mice. The findings could lead a possible therapeutics for the management of AFB1-induced erythrocyte toxicity.