Aqueous zinc ion batteries (AZIBs) are promising energy storage solutions due to their high energy density and safety. However, developing cathode materials that offer both high energy density and durability for Zn2+ ions storage remains challenging. Manganese (Mn) oxide-based cathodes have been developed for AZIBs due to their high discharge voltage and desirable capacity, but face challenges like poor conductivity, slow reaction kinetics, and dissolution during cycling. Doping, morphology/structure design, and protective layers are effective for enhancing the structure, conductivity, and electronic properties of Mn-based oxides. A synthetic strategy combining these methods for Mn3O4 cathodes is proposed for AZIBs. K+ ions doping in Mn3O4 (K-Mn3O4) can regulate local electronic structure, induce oxygen vacancies, improve conductivity, and provide more active sites for Zn2+ ions diffusion. Additionally, K-Mn3O4 nanochain (K-Mn3O4-NCs), with a unique chain-like nanostructure (NCs) and high aspect ratio, synthesized via Mn2+ ions chelation with nitrilotriacetic acid (NTA) and calcination, show reduced interparticle contact resistance, shorter Zn2+ ions diffusion length, and faster reaction kinetics. Meanwhile, the in-situ polymerized polyaniline (PANI) layer on K-Mn3O4-NCs shields against corrosion (K-Mn3O4-NCs@PANI), connects 1D K-Mn3O4-NCs into a continuous conductive network, suppresses volume expansion, and improves stability. Electrochemical analysis shows that K-Mn3O4-NCs@PANI exhibits higher stability and faster reaction kinetics due to a reduced bandgap, increased oxygen defects, and less coulombic repulsion between Zn2+ ions and Mn oxide hosts. The K-Mn3O4-NCs@PANI cathode achieved a high capacity of 510mAh/g at 0.1 A/g and excellent rate capacity of 203.2mAh/g at 5 A/g. After 20,000 cycles, it maintained a capacity of 90.3mAh/g at 5 A/g, showing exceptional long-term stability with a minimal decay rate of 0.026 ‰ per cycle.
Read full abstract