Abstract

The present review is related to the novel approach for improvement of the optical properties of wide bandgap metal oxides, in particular TiO2, based on the formation of the inorganic–organic hybrids that display absorption in the visible spectral range due to the formation of interfacial charge transfer (ICT) complexes. We outlined the property requirements of TiO2-based ICT complexes for efficient photo-induced catalytic reactions, emphasizing the simplicity of the synthetic procedure, the possibility of the fine-tuning of the optical properties supported by the density functional theory (DFT) calculations, and the formation of a covalent linkage between the inorganic and organic components of hybrids, i.e., the nature of the interface. In addition, this study provides a comprehensive insight into the potential applications of TiO2-based ICT complexes in photo-driven catalytic reactions (water splitting and degradation of organic molecules), including the identification of the reactive species that participate in photocatalytic reactions by the spin-trapping electron paramagnetic resonance (EPR) technique. Considering the practically limitless number of combinations between the inorganic and organic components capable of forming oxide-based ICT complexes and with the knowledge that this research area is unexplored, we are confident it is worth studying, and we emphasized some further perspectives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.