Anaphylactic shock (AS) is the most severe form of acute systemic hypersensitivity reaction. Although epinephrine can restore patients' hemodynamics, it might also be harmful, supporting the need for adjuvant treatment. We therefore investigated whether NButGT, enhancing O-GlcNAcylation and showing beneficial effects in acute heart failure might improve AS therapy. Ovalbumin-sensitized rats were randomly allocated to six groups: control (CON), shock (AS), shock treated with NButGT alone before (AS+pre-Nbut) or after (AS+post-Nbut) AS onset, shock treated with epinephrine alone (AS+EPI) and shock group treated with combination of epinephrine and NButGT (AS+EPI+preNBut). Induction of shock was performed with an intravenous (IV) ovalbumin. Cardiac protein and cycling enzymes O-GlcNAcylation levels, mean arterial pressure (MAP), heart rate, cardiac output (CO), left ventricle shortening fraction (LVSF), mitochondrial respiration, and lactatemia were evaluated using Western blotting experiments, invasive arterial monitoring, echocardiography, mitochondrial oximetry and arterial blood samples. AS decreased MAP (-77%, p < 0.001), CO (-90%, p < 0.001) and LVSF (-30%, p < 0.05). Epinephrine improved these parameters and, in particular, rats did not die in 15 min. But, cardiac mitochondrial respiration remained impaired (complexes I + II -29%, p < 0.05 and II -40%, p < 0.001) with hyperlactatemia. NButGT pretreatment (AS+pre-Nbut) efficiently increased cardiac O-GlcNAcylation level as compared to the AS+post-Nbut group. Compared to epinephrine alone, the adjunction of NButGT significantly improved CO, LVSF and mitochondrial respiration. MAP was not significantly increased but lactatemia decreased more markedly. Pretreatment with NButGT increases O-GlcNAcylation of cardiac proteins and has an additive effect on epinephrine, improving cardiac output and mitochondrial respiration and decreasing blood lactate levels. This new therapy might be useful when the risk of AS cannot be avoided.