Oval cells (OCs) is the name of hepatic progenitor cells (HPCs) in rodents. They are a small population of cells in the liver with the remarkable ability to proliferate and regenerate hepatocytes and cholangiocytes in response to acute liver damage. Isolating OCs generally requires a pretreatment with special diets, chemicals, and/or surgery to induce hepatic damage and OC proliferation in mice. Unfortunately, these pretreatments are not only painful for the mice but also increase the cost of the assays, and the effects on the different organs as well as on various liver cells are still unclear. Therefore, the search for a protocol to obtain OCs without prior liver damage is mandatory. In our study, we present a protocol to isolate murine OCs from healthy liver (HL-OCs) and compare them with OCs isolated from mice pretreated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC-OCs). Our results demonstrated that cells derived from untreated mice exhibited similar behavior to those from treated mice in terms of surface marker expression, proliferation, and differentiation capacity. Therefore, given the impracticability of isolating human cells with prior hepatotoxic treatment, our model holds promise for enabling the isolation of progenitor cells from human tissue in the future. This advancement could prove invaluable for translational medicine in the understanding and treatment of liver diseases.
Read full abstract