Polytetrafluoroethylene (PTFE) hollow fiber membrane holds tremendous potential for the treatment of complex wastewater due to its outstanding chemical and thermal stability. However, its treatment efficiency is often hindered by the low water permeate flux arising from the inherent hydrophobicity of PTFE. Here, we present a gentle and convenient hydrophilic modification method that involves immersion in a nonionic surfactant aqueous solution, followed by dopamine self-polymerization. The nonionic surfactant facilitated the penetration of the dopamine solution into the membrane, where dopamine self-polymerized to form a hydrophilic layer on the surface and inner pores of the membrane. The hydrophilicity-modified PTFE hollow fiber membranes demonstrated an impressive increase in water permeate flux, reaching 10231.4 L m−2 h−1, nearly ten times that of the original membrane. Even after prolonged exposure to a strong acid solution (pH = 1) or an oxidant solution (1000 mg L−1 NaClO) for two weeks, this membrane still maintained its favorable water permeability. Furthermore, the modified PTFE membranes also exhibited remarkable resistance to fouling by humic acid. These results showcased a straightforward method for designing a hydrophilic layer on PTFE hollow fiber membranes, underscoring their significant potential for real wastewater treatment applications.
Read full abstract