The physiological role of the tripeptide glutathione (GSH) and its oxidized form (GSSG) was investigated during the initial steps of dimorphism (formation of germ-tubes), which is induced by human serum in exponential yeast-like cells (blastoconidia) of the Candida albicans strain CAI-4 (wild type) and its congenic tps1/tps1 mutant, deficient in trehalose synthesis. The content of glutathione, measured both as GSH and the ratio GSH/GSSG, underwent a moderate drop in parallel with the induction of a significant degree of germ-tube emergence. Whereas the supply of exogenous glutathione did not affect the degree of dimorphic transition, depletion of intracellular glutathione by addition of 1-chloro-2,4 dinitrobenzene (CDNB) caused a clear reduction in the percentage of hyphae formation; although this effect must be due to the severe cell mortality produced by CDNB. Simultaneous measurements of GSH-metabolizing activities revealed a moderate decrease of glutathione reductase concomitant with the activation of glutathione peroxidase. In turn, catalase activity did not show noticeable changes. The putative correlation between the redox status of glutathione and the dimorphic conversion in C. albicans is discussed.
Read full abstract