We establish uniform bounds for oscillatory singular integrals as well as oscillatory singular integral operators. We allow the singular kernel to be given by a function in the Hardy space <svg style="vertical-align:-2.3205pt;width:61.875px;" id="M1" height="18.725" version="1.1" viewBox="0 0 61.875 18.725" width="61.875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28
h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /></g> <g transform="matrix(.012,-0,0,-.012,14.975,7.613)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g> <g transform="matrix(.017,-0,0,-.017,21.3,15.775)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,27.182,15.775)"><path id="x1D412" d="M484 692v-218h-28q-25 83 -70 130q-54 56 -123 56q-51 0 -80.5 -27t-29.5 -72q0 -37 21 -59q23 -25 82 -55q14 -8 68 -36q67 -34 80 -41q50 -28 79.5 -74.5t29.5 -101.5q0 -96 -69 -154q-68 -59 -179 -59q-61 0 -130 24q-30 10 -41 10q-23 0 -30 -34h-29v248h29
q23 -97 60 -143q57 -72 144 -72q58 0 92 30.5t34 82.5q0 47 -57 88q-30 21 -122 65q-91 44 -131 91.5t-40 118.5q0 95 58.5 148t160.5 53q54 0 117 -23q27 -9 42 -9q14 0 20.5 6.5t11.5 26.5h30z" /></g> <g transform="matrix(.012,-0,0,-.012,36.638,7.613)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2
q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z" /></g><g transform="matrix(.012,-0,0,-.012,42.611,7.613)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.012,-0,0,-.012,49.595,7.613)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,55.925,15.775)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg>, while such results were known previously only for kernels in <svg style="vertical-align:-0.0pt;width:9.8249998px;" id="M2" height="11.175" version="1.1" viewBox="0 0 9.8249998 11.175" width="9.8249998" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><path id="x1D43F" d="M559 163q-23 -66 -68 -163h-474l6 26q62 4 79.5 19.5t28.5 75.5l78 409q7 35 8.5 49t-8 25t-24 13t-51.5 5l5 28h266l-6 -28q-65 -5 -79.5 -18t-25.5 -74l-76 -406q-10 -57 14 -75q12 -13 96 -13q93 0 126 29q41 40 76 109z" /></g> </svg> log <svg style="vertical-align:-2.3205pt;width:50.337502px;" id="M3" height="18.725" version="1.1" viewBox="0 0 50.337502 18.725" width="50.337502" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><use xlink:href="#x1D43F"/></g><g transform="matrix(.017,-0,0,-.017,9.769,15.775)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,15.65,15.775)"><use xlink:href="#x1D412"/></g> <g transform="matrix(.012,-0,0,-.012,25.1,7.613)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,31.073,7.613)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,38.058,7.613)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,44.387,15.775)"><use xlink:href="#x29"/></g> </svg>, a proper subspace of <svg style="vertical-align:-2.3205pt;width:61.875px;" id="M4" height="18.725" version="1.1" viewBox="0 0 61.875 18.725" width="61.875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><use xlink:href="#x1D43B"/></g> <g transform="matrix(.012,-0,0,-.012,14.975,7.613)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,21.3,15.775)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,27.182,15.775)"><use xlink:href="#x1D412"/></g> <g transform="matrix(.012,-0,0,-.012,36.638,7.613)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,42.611,7.613)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,49.595,7.613)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,55.925,15.775)"><use xlink:href="#x29"/></g> </svg>. One of our results established a <svg style="vertical-align:-2.3205pt;width:113.95px;" id="M5" height="17.3375" version="1.1" viewBox="0 0 113.95 17.3375" width="113.95" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,14.388)"><use xlink:href="#x1D43F"/></g> <g transform="matrix(.012,-0,0,-.012,9.763,6.225)"><path id="x1D45D" d="M570 304q0 -108 -87 -199q-40 -42 -94.5 -74t-105.5 -43q-41 0 -65 11l-29 -141q-9 -45 -1.5 -58t45.5 -16l26 -2l-5 -29l-241 -10l4 26q51 10 67.5 24t26.5 60l113 520q-54 -20 -89 -41l-7 26q38 28 105 53l11 49q20 25 77 58l8 -7l-17 -77q39 14 102 14q82 0 119 -36
t37 -108zM482 289q0 114 -113 114q-26 0 -66 -7l-70 -327q12 -14 32 -25t39 -11q59 0 118.5 81.5t59.5 174.5z" /></g> <g transform="matrix(.017,-0,0,-.017,17.45,14.388)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,23.332,14.388)"><path id="x1D464" d="M689 332q0 -81 -40 -161.5t-103.5 -131.5t-127.5 -51q-32 0 -58.5 16t-40.5 46q-70 -62 -139 -62q-45 0 -77.5 30t-32.5 86q0 8 7 52q11 77 45 187q6 19 6 34q0 6 -7 6q-24 0 -78 -64l-20 23q32 48 73 77t78 29q32 0 32 -43q0 -30 -12 -73q-27 -95 -38 -152
q-8 -44 -8 -58q0 -77 68 -77q31 0 60 33.5t39 77.5l62 260l75 16l5 -6l-63 -246q-8 -29 -8 -58q0 -77 68 -77q66 0 116 75.5t50 194.5q0 43 -12 57q-11 12 -11 24q0 19 15 35.5t34 16.5q18 0 30.5 -34.5t12.5 -81.5z" /></g><g transform="matrix(.017,-0,0,-.017,35.435,14.388)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,48.864,14.388)"><path id="x2192" d="M901 255q-71 -62 -185 -187l-22 15l102 147h-727v50h727l-102 147l22 15q114 -125 185 -187z" /></g><g transform="matrix(.017,-0,0,-.017,72.628,14.388)"><use xlink:href="#x1D43F"/></g> <g transform="matrix(.012,-0,0,-.012,82.35,6.225)"><use xlink:href="#x1D45D"/></g> <g transform="matrix(.017,-0,0,-.017,90.025,14.388)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,95.907,14.388)"><use xlink:href="#x1D464"/></g><g transform="matrix(.017,-0,0,-.017,108.01,14.388)"><use xlink:href="#x29"/></g> </svg> bound for certain weights. At the same time, it provides a solution to an open problem in Lu (2005).