Abstract

We establish uniform bounds for oscillatory singular integrals as well as oscillatory singular integral operators. We allow the singular kernel to be given by a function in the Hardy space <svg style="vertical-align:-2.3205pt;width:61.875px;" id="M1" height="18.725" version="1.1" viewBox="0 0 61.875 18.725" width="61.875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28&#xA;h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /></g> <g transform="matrix(.012,-0,0,-.012,14.975,7.613)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g> <g transform="matrix(.017,-0,0,-.017,21.3,15.775)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,27.182,15.775)"><path id="x1D412" d="M484 692v-218h-28q-25 83 -70 130q-54 56 -123 56q-51 0 -80.5 -27t-29.5 -72q0 -37 21 -59q23 -25 82 -55q14 -8 68 -36q67 -34 80 -41q50 -28 79.5 -74.5t29.5 -101.5q0 -96 -69 -154q-68 -59 -179 -59q-61 0 -130 24q-30 10 -41 10q-23 0 -30 -34h-29v248h29&#xA;q23 -97 60 -143q57 -72 144 -72q58 0 92 30.5t34 82.5q0 47 -57 88q-30 21 -122 65q-91 44 -131 91.5t-40 118.5q0 95 58.5 148t160.5 53q54 0 117 -23q27 -9 42 -9q14 0 20.5 6.5t11.5 26.5h30z" /></g> <g transform="matrix(.012,-0,0,-.012,36.638,7.613)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2&#xA;q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z" /></g><g transform="matrix(.012,-0,0,-.012,42.611,7.613)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.012,-0,0,-.012,49.595,7.613)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,55.925,15.775)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg>, while such results were known previously only for kernels in <svg style="vertical-align:-0.0pt;width:9.8249998px;" id="M2" height="11.175" version="1.1" viewBox="0 0 9.8249998 11.175" width="9.8249998" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><path id="x1D43F" d="M559 163q-23 -66 -68 -163h-474l6 26q62 4 79.5 19.5t28.5 75.5l78 409q7 35 8.5 49t-8 25t-24 13t-51.5 5l5 28h266l-6 -28q-65 -5 -79.5 -18t-25.5 -74l-76 -406q-10 -57 14 -75q12 -13 96 -13q93 0 126 29q41 40 76 109z" /></g> </svg> log <svg style="vertical-align:-2.3205pt;width:50.337502px;" id="M3" height="18.725" version="1.1" viewBox="0 0 50.337502 18.725" width="50.337502" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><use xlink:href="#x1D43F"/></g><g transform="matrix(.017,-0,0,-.017,9.769,15.775)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,15.65,15.775)"><use xlink:href="#x1D412"/></g> <g transform="matrix(.012,-0,0,-.012,25.1,7.613)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,31.073,7.613)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,38.058,7.613)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,44.387,15.775)"><use xlink:href="#x29"/></g> </svg>, a proper subspace of <svg style="vertical-align:-2.3205pt;width:61.875px;" id="M4" height="18.725" version="1.1" viewBox="0 0 61.875 18.725" width="61.875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><use xlink:href="#x1D43B"/></g> <g transform="matrix(.012,-0,0,-.012,14.975,7.613)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,21.3,15.775)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,27.182,15.775)"><use xlink:href="#x1D412"/></g> <g transform="matrix(.012,-0,0,-.012,36.638,7.613)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,42.611,7.613)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,49.595,7.613)"><use xlink:href="#x31"/></g> <g transform="matrix(.017,-0,0,-.017,55.925,15.775)"><use xlink:href="#x29"/></g> </svg>. One of our results established a <svg style="vertical-align:-2.3205pt;width:113.95px;" id="M5" height="17.3375" version="1.1" viewBox="0 0 113.95 17.3375" width="113.95" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,14.388)"><use xlink:href="#x1D43F"/></g> <g transform="matrix(.012,-0,0,-.012,9.763,6.225)"><path id="x1D45D" d="M570 304q0 -108 -87 -199q-40 -42 -94.5 -74t-105.5 -43q-41 0 -65 11l-29 -141q-9 -45 -1.5 -58t45.5 -16l26 -2l-5 -29l-241 -10l4 26q51 10 67.5 24t26.5 60l113 520q-54 -20 -89 -41l-7 26q38 28 105 53l11 49q20 25 77 58l8 -7l-17 -77q39 14 102 14q82 0 119 -36&#xA;t37 -108zM482 289q0 114 -113 114q-26 0 -66 -7l-70 -327q12 -14 32 -25t39 -11q59 0 118.5 81.5t59.5 174.5z" /></g> <g transform="matrix(.017,-0,0,-.017,17.45,14.388)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,23.332,14.388)"><path id="x1D464" d="M689 332q0 -81 -40 -161.5t-103.5 -131.5t-127.5 -51q-32 0 -58.5 16t-40.5 46q-70 -62 -139 -62q-45 0 -77.5 30t-32.5 86q0 8 7 52q11 77 45 187q6 19 6 34q0 6 -7 6q-24 0 -78 -64l-20 23q32 48 73 77t78 29q32 0 32 -43q0 -30 -12 -73q-27 -95 -38 -152&#xA;q-8 -44 -8 -58q0 -77 68 -77q31 0 60 33.5t39 77.5l62 260l75 16l5 -6l-63 -246q-8 -29 -8 -58q0 -77 68 -77q66 0 116 75.5t50 194.5q0 43 -12 57q-11 12 -11 24q0 19 15 35.5t34 16.5q18 0 30.5 -34.5t12.5 -81.5z" /></g><g transform="matrix(.017,-0,0,-.017,35.435,14.388)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,48.864,14.388)"><path id="x2192" d="M901 255q-71 -62 -185 -187l-22 15l102 147h-727v50h727l-102 147l22 15q114 -125 185 -187z" /></g><g transform="matrix(.017,-0,0,-.017,72.628,14.388)"><use xlink:href="#x1D43F"/></g> <g transform="matrix(.012,-0,0,-.012,82.35,6.225)"><use xlink:href="#x1D45D"/></g> <g transform="matrix(.017,-0,0,-.017,90.025,14.388)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,95.907,14.388)"><use xlink:href="#x1D464"/></g><g transform="matrix(.017,-0,0,-.017,108.01,14.388)"><use xlink:href="#x29"/></g> </svg> bound for certain weights. At the same time, it provides a solution to an open problem in Lu (2005).

Highlights

  • In this paper we establish uniform bounds for oscillatory singular integrals

  • Let n ≥ 2 and Sn−1 denote the unit sphere in Rn equipped with the induced Lebesgue measure σ

  • = {P : Rm 󳨀→ R : P be a polynomial with deg (P) ≤ d}. (3)

Read more

Summary

Research Article Weighted Estimates for Oscillatory Singular Integrals

We establish uniform bounds for oscillatory singular integrals as well as oscillatory singular integral operators. We allow the singular kernel to be given by a function in the Hardy space H1(Sn−1), while such results were known previously only for kernels in L log L(Sn−1), a proper subspace of H1(Sn−1). One of our results established a Lp(w) → Lp(w) bound for certain weights. It provides a solution to an open problem in Lu (2005)

Introduction
Journal of Function Spaces and Applications
Therefore we have
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call