Abstract

The highly oscillatory algebraic singular Volterra integral equations cannot be solved directly. A collocation numerical method is proposed to overcome the difficulty created by the highly oscillatory algebraic singular kernel. This paper is composed primarily of two methods—the piecewise constant collocation method and the piecewise linear collocation method—in which uniformly distributed nodes serve as collocation points. For the efficient computation of highly oscillatory and algebraic singular integrals, the steepest descent method as well as the Gauss–Laguerre and generalized Gauss–Laguerre quadrature rules are employed. Consequently, the resulting linear system is solved for the unknown function approximated by the Lagrange interpolation polynomial. Detailed theoretical analysis is carried out and numerical experiments showing high accuracy are also presented to confirm our analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.