Aiming at the problem that the traditional reliability models of mechanical products are used to predict the reliability of hydraulic automatic transmission and the expected result is relatively large, firstly, the empirical distribution model line is used to statistically analyze the failure distribution law of the hydraulic automatic transmission; then, the Fourier transform is used to perform frequency domain analysis on experience distribution; on this basis, comprehensively consider the characteristics of experience distribution and frequency domain characteristics of experience distribution, constructs the reliability model of exponential decay oscillation distribution and the corresponding reliability, failure efficiency and average life calculation model; meanwhile, studies the influence of attenuation coefficient, oscillation amplitude, oscillation angle frequency, and other parameters on the probability distribution characteristics. On this basis, the established probability distribution models are adopted to fit the failure time data of hydraulic automatic gearbox carried by a forklift, and the fitting results are compared with exponential distribution models, three‐parameter Weibull models, and “bathtub curve” models. The comparing results show that the established exponential decayed oscillation distribution model can better describe the probability distribution characteristics of the fault‐free working time of automatic transmission, and the use of this model can obtain a smaller root mean square error. Simultaneously, the research conclusions of this paper can provide meaningful guidance and reference for the analysis of the life distribution model of mechanical products with exponentially attenuated oscillation probability density change law.