Abstract
Matter-dominant universe cannot be explained with the Standard Model. In order to understand why the current universe mainly consists of matter particles, scientists turned their attention to neutrino oscillations, and conducted research on the properties of the particle and its potential relationship with the matter-antimatter asymmetry observed in the universe. In this research, the probability function of a neutrino oscillation was studied for 2-neutrino case to understand neutrino oscillation in particle accelerator experiments. For a more practical study, the neutrino oscillation probability function was calculated for two neutrino experiments and was used to verify neutrino detector positions and calculated ∆m2 which is mass difference between oscillating two different neutrinos. From this work, it was understood that detectors are located at positions with the highest probability for detecting neutrino oscillations, and it was also confirmed that neutrino were oscillating from muon neutrinos to electron neutrinos in particle accelerator experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.